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A summary is given of techniques and results b r  calculating light scatter-
~ng in anisotropic crysta ls valid for arbitrary directions of the incident beam,
the ~scattered beam and the crystal surface normal relative to the crystal axes. , —

A dyadic Green’s function that distingui shes ray and propagation directions
leads to a scattering c lilciency ,i:.side the crystal that involves he Gaussian cur-
vature of the surface of wave normals. After taking account of the solid angle
expansion , and the source volume demagnilication at the crystal surface , a
scattering formula is given suitable for comparison with experiments done out-
side t he crystal. Application is made to Brillouin and Raman scattering.

I. INTRODUCTION
The availabil ity of laser sources has led to a great upsurge in light scattering exper iments

in recent years . Many experiments have been performed on crystals of low symmetry and
large optical anisotropy while a few experiments 1 , 2 have used light scattering to measure qua,,-
titativel y the nonlinear polarization causing the scattering. Such numerical measurements re-
quire a theory which (I accounts correct ly f~r the noncolhneari y of the ray vector and t he
wavev ector that results from the optical anisotropv and (2) relates the nonlinear polarization to
measuring instrument parameters which are outside the crysta l . Previous theories 3 have often
mishandled the first requirement and have always ~gnorcd the second.

The purpose of our study of the theory of light scattering , of which we present a sum-
mary here, has been to remedy these deficiencies of previous theories. To remedy the first
deficiency resulting from optical anisotropy we have based our theory on a Green’s function
solut ion of the electric field wave equation. 4 ’ 5 This technique is appropriate because the
scatter ing volume is typically very small compared to the size of the crystal under study when
laser sources are used. Because even (lie crystal surface is in the far field, an asymptot ic
evaluat ion of the Green’s function inside the c r y s t a l  is adequate. Our first - and incorrect -
evaluation 4 used a stationary phase integration over two variables followed by a residue in-
t.~gration over the third variable. The appealing but nevertheless incorrect result was what
would have been calculated for an isotropic medium with the subsequent replacement of the
isotrop ic refractive index by the one appropriate to the correct ray direction in the crystal.
This repiacement procedure has been used by othc~~. ~ Our second - and correct - evaluat ion 5’ 7
follows that of Kogelnik 8 and Kogelnik and Motz ’1 who used It on a magnetoionic media prob-
lem. Their work was based on a stationary phase technique of Lighthill ~ in which ihc residue
integration was performed f irst and the stationary phase method was applied second. The
correct asymptotically eva luated Green ’s function in an anisoiropic crysta l 53 is presented in
Sec. II. This procedure ‘akes proper account of the noncollinearity of the ray and propagation
directions in an anisotropic crys tal. In Sec. Ill the Green ’s function solution is used to find an
expression for the scattered power inside the crys ta l. The exprcssj on difl’ers in several ways
from the best previous treatment of Brillouin scattering in anisotropic media by Motulevich.~
One difference is the appearance of the Gaussian cur vature K of the surface w (k ) 

~~ w in our
formula fOr the scattered power inside the crystal. Motulev ich’ s treatment was not based on a
Green ’s function approach but rather on Ginzhurg’s 2 llamiltonian approach using an aniso- 
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tropic Coulonih gauge.
In Sees . I V and V ~ e piCsCi i t  I he remedy to the ~cu iid dc l ic ic i icx  o f pi ev io us theories ,

t hat is , to re lating the scat ter e d power inside the cr~ sia l to quant i t ies character iz ing the detector
outside the c r y s t a l  In . l\ lie sol id angle ins ide the y s i i l  is related to the expanded solid
ang le outside the ci~ si ,il T h e  lormu las presented arc co mpletel y general ri apply ing to any
or ientation of the c rys ta l  ~~~~ lie sL.iiiciCd ra y , and the sw ace normal. In Sec . V the length
01’ t he sca t te n g xolu n ie along lie inc ident beam is elat ed to lie c ot  expond ing demagnified
length as seen outsid e the cr~x iaI  h~ a lieki stop of he de ic ion opt ics ihe dcmagnibica iion
formula is also coinplciel ~ genera l in appk m g  10 mr ~ iritni it i o i i  of the c r y s t a l  is.cs . t he scat-
tere d ray , and t he s u r la ~c normal. l ire ~ i.t t h of the sc.iii~ r n g  volume (t he unscatte red beam )

~ lien laser sources are used is iv p icat l  much l ess  than the width of lie held stop of the detec-
tion ) pt lcs an d so does not en te r  the foriiiula~ exp l ic i t l y .  The solid atig le exp a nsion and source
vo lume demagn hcat ion expre s s os are then combined wi th  the sc a i te red power formula of
Sec. I l l  to produce in Sec . V 11 a scat tered p I% ~er rn :flui,i apply ing to rr icas urc nient s made out-
si de the crysta l .

The sc. i t rc red p~~ er tornru l,,s ol Sc , s Ill and ~ II arc lorniuh ied in term s of an arbitrar y
mec hanism of light sca t t er in g .  In Sec. \ ‘l II t ire po~s er h rmula is specia lized to tx ~ o important
mec han isms . Brillouin scat t er ing I from ac ou st ic  phonuns) and R iman scatter ing 14 ( f rom
opt ic phonons) . The t inal Formulas are completely general ve t  compact and convenient.

II. l\SIDE GREEN’S FUNCI ION
The x~av e equation for the electric field F (r 1 cxp ( — I w t )  in in an is otr o p ic dIe lectric gen-

erated by the ton linear polarization P ‘
°‘ r ‘) exp  ( kut I at the single frequency &; is

(0 ’ — , (0 ’ J)
Vx  (VxF ,  1 — —w ~r I~. 

— — — --- . (2 .11
v ’ c~’ 

~~~.

It has th e Green ’s function ~o lut j ~ n ~

F I II ) = J ( , ( r  - - r ‘ I P ~ r Jr  (2.2 )

w here

( , I R)  = J ~~~~~~~~~~~~~~ 
. 12.3 )

o (k ,, I

~~(k , w ) ~~ l~~~, i ’ ~ I A l  - k k l  ~~t ( j  (2.4 )

and ~
‘ (w I s the I’rcquen v depen dent v!re lee1r ~ c i s i.

‘~ e have p rc s l usl\ g i \ cn  in i~\ n t p t k e v i i l u i ; n  I I .  2 3~ ~altd For AR >> I.
a slig ht c hange (ii l i O t i l h i c i  t O e  is~ il ipt i f t  v i r ile I iceIi ’s UI1LIOi l  L I I  ne wr i t t en

I ~
‘ .~~ ‘ ~‘ ~~. .~~~‘ R (2 .~ I

2 c ~
‘,~

1 c’rc e ’~’ is the unit electr ic t i l t  vee r , s , I L O h  ~v i t 1 i 1 cc~cn r i s l e  il t e e  cx i ra irdoiar ~ I

~ h ose ray directI o n i is pa rallel 0) lie dir ect ion (ii ohse u ;a ion

t I~~R . (2 o t

nd F~ 
‘i” is t i e  ii gle betwee n the cay s . c  t o  t nd the sc iS es cv i n  k ‘ ,~~~s. u ,iied w ith the above

ray directi on, ‘the sc ,i la r ( r ee r s ‘ i i i v  lion hev nic’~

Li’ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ . —~~~~~~ 
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LIGHT SCATTERING WITH SURFACE CORRECTiONS 3

g ’~( R )  = ~~ 
cxp Ei k ’~ ‘RI , (2.7)

4ir R
where

cos~
0 

(2 8)

and K~ is t he Gaussian curvature of the (k) surface at k~ , Equation (2.7) has been shown 7
to agree prec isely, in the uniaxial case , with the Green ’s function obta ined without asymptotic
approximat ions. This Green ’s function disagrees by the factor f~ 

with the intuitive notion that
for a given direction of observation one may use the Green ’s function for an isotropic medium
with the index of refraction appropriate to direction k~ .

III.  SCATT ERED POWER INSIDE THE CRYSTAL
If Eqs. (2.2) , (2. 5) , (2. 7) and (2.8) are used to calculate the electric field and if the

corresponding magnetic field, H = (Vx E)/ ( iw 1.t,,), is also found, t hen the Poynting vector
for a given mode ~ is found to be

s~ = 
~.L 0 W

4 
1, 4 1 1 / t i! 2 I c dtI 2 t (3.1)

32ii’ 2 c (cos~~
) 3

where ,:~ is the index of refraction appropriate o wave vector k 41 and

c~ e~ .j P ’1(r exp ( ~ ike . r) dr . (3.2)

The ratio of the scattered power inside the crystal ,
= S~~r 2 dU ‘ . (3.3)

(where dO r is a solid angle of rays in r space) to the incident power ,

= A IS~ 
= A~y1J/~J EHJ 2cos~ ” (3,4)

may be expressed as
pSCal

I F S  
= R V 5d j ~ 

r (3 5)
1) 1K/ A  , In

Il lS

4 Here VS is the scattering volume accepted by the detector , .4, the cross-sectional area of the in-
cident beam inside the crystal and R, the scattering eff iciency (the scattered power per unit in-
cident power , per unit solid angle, per unit pat h length) , is given by

4
R = ~~- “ — (3 6)

~ 8ir ?,,Ucos S Ocos& Il (k 41) 2 K41

The nonlinear phenomena that give rise to the scat tering arc included in the quantity

f P W (r) (, l k r (fr r.1= 2 ‘ 
(3.7)

4 2e ,
’
~~i

One striking way that t he expression , Eq. (3.6) . for the scattering efficiency differs from previ-
ous expressions is by its dependence on the Gaussian curvature K~ of the th branch of the
w (k) — w surface.

I 
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4 MELVIN LAX AND DONALD F. NELSO N

IV. SOLID ANGLE ’EXPA I’4SION
The ratio of the solid angles subtended by the rays of a beam inside and outside a crystal

can be factored as
dO 1’;1 

= 
df1 ,’~ dO ,A~ (41)

dfl 0~1 dtg dfl 0~1
The first factor describes the ratio of the solid angles in ray vector space and wavevector space
and is independent of the existence of a crystal surface. The second factor , describing the
change in wavevector solid angles , is comp letely determined by Snell ’s law .

Since 
~~~~~~ 

is readily computed in terms of the area of a patch d,4k of the cd (k ) surface ,
see Fig. 2 , and dfJ1’;~ is related to the same area by Gauss’ theorema egregium, see Fig. 3, we ob-
ta in our previously quoted result 7

di11’;1 / d t ’Z 1~ = K 41 (k41 ) 2/cos8’i . (4.2)

Across the surface of a crystal (nominally in the 3 or z direc tion) Snell’s law guarantees
the continuity of the transverse components of the propagation vector and, hence, of 

~~ 
dk2.

Since dk t dk2 is simply related to the patch area dA ”, see Fig. 4, and hence to the solid angle
dO k, see Fig. 2, Snell’s law leads to ihe relation ~

d 
~~ = 

cos8 ‘‘~ cosa ‘ (4 3)
10ou i (p 4 1 ) 2  cos~

where fi is the angle of arrival of the ray inside the crystal to the surface normal, 8 is the an-
gle between ray and wavevectors , as before , and ~ is the angle betwee n the departure ray out-
side the crystal and the surface normal.

The product of Eqs. (4.2) and (4.3) y ields the desired sol id angle expansion
dfl 1

t
~/ d f l 001 = (w/ c) 2 K thcosa/cosf 3 . (4.4)

A slight rearrangement of this equation suggests that
i/ft “cosf3/K . (4.5)

is an invarian t for the passa~e of a beam from one material to anot her , a result we have recent-
ly proved quite generally. t )  Equation (4.4) is a special case of this invariance in which the
second medium is a vacuuni with 

~~~ 
= (c/w 2

V. SOURCE VOLUME DEMAGNIFICATION
When the laser beam, scattered ray, surface normal, and departure ray outside the crystal

are all in one plane, it is possible to der ive the length i~ along the laser beam in the crystal
from which radiation is admitted by a detector field stop of length ‘D~ 

As seen from Fig. 5,
these lengths are related by

I
~
.Sifl(?

~ I ~ii (5 1)
cos(3 cos~ cosa

where 9~ is the scattering angle.
When the rays mentioned above are not all coplanar , Eq. (5.1) must be replaced by

“S NcosfJ (5 2)
4 /~ Sifl hI,~.COSa

where N is the noncoplanari ly correction , 16

____ -‘ ~~~~~~~- -.‘. : ‘-‘ .



LIG h T SCATT ERING WITH SURFACE CORRECTIONS 5

N = l/(cos~ cos~~’ — cosf~ sin~ sin~~’) .  (5.3)

Here 4’ ’ is the angle of tilt between the plane delined by the unscattered laser beam and the
normal to the inpu t surface and the plane defined by the scattered ray and exit surface normal:

4, is the angle of tilt between the latter plane and the departure plane defined by the normal to
t he exit surface and the scattered ray after it has left the crystal.

VI. SCATTERED POWER OUTS IDE THE CRYSTAL
To convert Eq. (3.5) to a power scattering formula outside the crystal , we use

• 
. picI~I = pSCai/ pX ,I (6.1)

pInC = p 712111 (6.2)

• where 1~ ° and T12’°’ are entrance and exit transmission factors. If we note that VS/A =

Eqs. (4.4) and (5.2) can be combined to yield
2 N11) dft 1

~K
41

15 d0’; 1 = ‘ 
‘ 

(6.3)
C SIfl~~

where we have written dO ~ for ~/f10u1 to remind us that it is the detector solid angle. A de-
tailed derivation of this result has been given elsewhere. 7 t 4 . t5 , t6

If Eqs. (6.1) , (6.2) and (6.3) are combined with Eq. (3.5), we obtain
pSCIIi R712

~ 
7’~~SlI/ 

~/ f ’~ 
DNKti 2 

(6 4)
pine sin(1~out

If Eq. (3.6) is used for the scattering etliciency, we obtain
J)Sca( 

— 
~ N1()(IQ ~ 712111 T2X I(J (6 5)

piflC 
— 

C SiflD ç 8ir 2,i41,,Ucos8 41cos8~
Equation (6.5) incorporates all the geometric optics of the crystal surface. The mechanism of
the scattering is contained in .1, whose evaluation will be discussed in the next sect ion.

VU. APPLICATION TO LIGHT SCATTERING
To apply our final scattering equation , Eq. (6. 5), to Brillouifl, Raman, or some other

scattering mechanism , it is necessary to evaluate .1, of Eq. (3.7), which involves the nonlinear
optical properties of the scattering medium. Since the volume V5 is large ~ompa red to all
relevan t wavelengths, it is permissible to take the limit as VS approaches infinity. The
We iner-Khinchin t heorem 17 applied to spatial variables rallier than the t ime then permits Eq.
(3.7) to be rewritten as an autocorrelation .

— 
e~ e~ J exp ( —  /k ~ r) < pNL (0) * pNL (r ) > (7 1)— 

2E ,~ I E U ( r ) l  2

where the limits are infinite.
With the understanding

E” ( r i )  = -
~
-
~~ E” ( r ) ‘~~“ ‘ + E H( r ) * e ’~~’ 1 . (7.2)

pNL (r,i) = ( r ) ‘~~R 1 + pNL ( r )* e~~
8 ’1. (7. 3)

where o,L is the input or laser frequency and w 8 is the Bri llouin (or Raman ) scattered frequen-
cy, we can wr ite

4

1 ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ,~~ . . 1 - - ~~~~Sat . , 2~~~~ , ~~~_A... -_ - .-. - I.ai ~ . - ,_s. a1
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pNL (r , i)  = 
~~~ Xoj, (r ,t ) E (r ,i) (7.4)

where the “suscept ibility” X 1,h is space and time dependent because it is induced by the pho-
non field in Brillouin or Raman scattering. Equation (7.1) can then be simplified to

= + J exp i—i (k 41 ~~ I I )  r I < N41U (0,0) N 41~ (r,0) > 1k (75)

where

N41U (r, t )  = e~ X ah (r, i) e,’;’ (7.6)

and we have used the plane-wave character exp (/ k~~r) of the unscattered wave E” (r).
If one is concerned with line shape , Eq. (7.5) can be decomposed by

J = f  J ( w)  dw /2ir (7.7)

where

J(w ) = 

~JJ exp Ii (o  
~~~~ 

) iI  exp F~ / (k 41~~k U ) , r )  <N 41u (0 .0)  N4111(r ,i)  > 1k di , (7.8)

and only the positive frequency components of exp (
~~iw L 1) N ’1” (r,i)  are included so that

J (w ) van ishes for w < 0.

Brillouin Scattering
The first application of our modified Green’s function , Eq. (2.7), wit h surface corrections

was made in connection with a detailed study of Brillouin scattering in calcite. Because the
formulas in this paper give a clear factorizat ion of our Brillouin scattering formula into intrin-
sic and geometric components , we indicate here the evaluation of J based on Eq. (7.5). To be
consistent wit h our definition of the photoelastic susceptibility as a relation between . the posi-
tive frequency components of p NL E.” and 11C.d (the displacement gradient), we must wr ite

Xah = 2X ahed U~ ,j . (7.9)

The averages , < u,, (0 ,0) u.d ( r i )  > , can be evaluated by using the expans ion of u~ in
terms of normal coordinates ,

u (r , i) = 

~~ 12 p0 u, (q) 
2 

b a(q, i) + e ~~~~~~~~ a~(q, i ) ]  • (7.10)

where q k 4 is the acoustic phonon propagation vector, p is the crystal density and 0 is its
volume so tha t ’ pfl = MN = mass per unit cell x number of cells. The unit displacement vec-
tor b is characteristic of the type of mode (e.g. transverse ) , and the sum over q also implies a
sum over types of modes. The mode amplitudes in the quantum mechanical case obey

< a~
(q.t ) a( q~i) > = 116 ( q .q ) .  (7.11)

< a(q, i) a t(q~,) > = (ii + I )  ~ (q.q ) (7.12)

where 7 is the actual phonon excitation number that reduces to

“ exp ~1iw ( q) / k TI — l 
(7.13)

in the thermal equilibrium case. Averages of the type , Eq. (7.12) , contr ibute to Stokes scatter-
ing, whereas those of type , Eq. (7.1 I) , contribute to anti-Stokes scattering. Because we usually
have lIw<<k T, both Stokes and anti-Sto kes scattering have an intensity prop ortional
ii k T/ lku. If we combine Eqs. (7.5) and (7.9)-(7.l3) , we obtain

_

~

-

~

‘- 

~~~~~~~~~~~~~~~~~~~~~~ ,
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LIGHT SCATTERING WITH SUR FACE CORRECTIONS 7

kT — 2
= —i— G , G = I e, ‘ X,,k, bk a1 I (7.14)

pvA

w here a1 q1/ I~! = k ,4/ Ik ~’ I is a unit vector iii the direction of phonon propagation and

~ (k ~l ) / k 4 (7.15)

is the sound velocity.
Equation (6.5) for the Stokes (or anti-Stokes ) power scattering by a single type of acoustic

mode can be rewritten as
pIcaL 

— ~ ~ N/~ ~~~ 
D 713fl1 713511 kTG (716)— 

c sinu1.~ 8ir 2 ~~tb 
11

U cos~
41 cos6 ”pv~

where Gof Eq. (7 .14) can also be expressed in terms of the Pockels tensor, p,~1, by means of

G = (1/4 ) (n 41 ,,u l ) 4  (cos8 41 cos~ ” )2  F , (7. 17)

F~~ d~ d P,/k/ bk a~ 
2 , (7.18)

Here ~~ and d 41 are unit electric displacement vectors of the input and scattered beams, and w

is the Brillouin scattered frequency oi 8 . Equation (7.16) was used in the analysis of our exper-
imental results 1,19 except for the noncoplanarity factor , N, w hich was not needed then since all
experiments were conducted in a symmetry plane.

Raman Scattering
A detailed analysis of Raman scattering by polaritons us ing the fluctuation-dissipation ap-

proach of Barker and Loudon 6 has been given. t4  To evaluate Eq. (7.8) for J (w ) , needed to ob-
tain the line shape in Raman scattering, we express the nonlinear suscept ibility defined in Eq.
(7.4) in the usual way,

x ,, ( r i )  = 2~~ Af w1
~ ( r i )  + 2B,/k Ek (r ,t)  , (7.19)

as an ionic contribution associated with the displace ment lv~
L of mode ~.t plus an electron ic con-

tri bution proportional to the electric field E (r , i) .  The factors of 2 assure conformity with
definitions in our previous work. 14 Because field and displacement are correlated in polar iton
mot ion, it was simpler to evaluate the correlations with the help of the fluctuation-dissipation
theorem. 14 ,6 If T8~ represents the response of <B> to a unit force at frequency w applied to
A, Eq. (7.8) yields 20

J(a + w L ) = 411 i i (w ) e7 e,” e,~’ ~~ Imt 
~ijab I (7.20)

w here ‘

“s1ab = E (A f )
~~A:b T~~ + B,~ ~~~ 7~~ + ~~ (A/ ) • Baic 7~~ + ~~ B1;~. A;1 ’ ~~~~k

’ 
(7.21)

= (A~ 
) q~ 

BIL 
~~~ + ~~~ ~~~ [E~~ q~ 

B~ (w )  + BahcI
+ ~ (,4(,L ) ‘ A~ 

Blz ( o )  + ~ (A ~ 
) fl~L (w )  . (7.22)

i
I The second form, Eq. (7.22), has used the equations of motion to express all response func-

tions in terms of the field-field response , i.e. the response of the electr ic field to a unit applied
external polarizat ion, as 
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7 = = (a t 

~~~~~
ç 5

~
. S~

— 

.h~~t .2 E~, COS 2 
~~~~ 

1(c k/w )2 — (,~~ ) 2 I  
— 

€ ,, s x ( w ) . S

The first two terms in Eq. (7 .23) represent (lie transverse modes while the third term
represents t lie longitudinal ni xIe.

The mode iv~ ~ ill ge tie ral y obey a ii equation of t he form 20

FH~ I (i,~P ) 2 — — 

~ y~’ 
(
~~

) I = q~ E~ 
(7.24)

where in11 is the ell~ctiv e mass , w~ t he eff ective (angular) frequency, y ’~ (s, ) the eflèctive Ire-
quency dependent damping constant and q[L is the c component of the effective charge. The
response of tt~~ t o a  unit app lied force , needed in Eq. (7 .22) , is given by

/3P (w )  = ( ( N P 2 — ~~
2 — iw y P (

~~
) I . (7.25 )

We may combine Eqs. (7 .20) — (7 .25) to obtain ./ (~ + w ’ - ) .  If J (w + w L ) is inserted
in place of i in Eq. (6.5 ) , the result , in view of Eq. (7 .7) , is the ratio of the Raman scattered
power per unit frequency interval to the incident power , both computed outside the crystal.
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FIGURE CAPTIONS

FIG. 1. A typical experimental setup for a Ramari scattering experiment which displays the
expansion of the solid angle on emerg ing from the crystal. For a narrow laser
beam, the source volume (~ = 4/ s from which scattered light is accepted is limited
by the input beam area .4 an d a length i~ determined by the field stop.

FIG. 2. The solid angle ~~ ~ associated ~s iii a patch of area c/A ~ = dudi ’ on the surface
w (k ) =

~~ of free-wave k vectors is given by j~~ 
A =1//1 & cos6/k 2 where dA k cosa is

the component of the area dA /S norma l to k , since dA A is normal to t or ~ w (k ).
FIG. 3. Gauss ’s bump theorem relates the area d.4 = dudt of an element of surface to the

area ~~ 
r on the surface of a unit sp here subtended by the unit normals to dudv

that have been shifted in a parallel manner until their origins coincide at 0, the
sphere center. The solid angle c/ f l  r = c/f) cl~ where ~

) = du/p ,~ is the ang le AUD
and d~ = dv/p~ is the angle AVB where p,1 and p, are the principal radii of curva-
ture . Thus dfl = K 1j, 1 A where K 

~~ 
p ) is the Gaussian curvature and

A = duck is the area of the patch on the cu (k ) surface.
FIG. 4. The patch d,4 A = dudv on the surface oi (k = w of Fig. 3 is plotted in a P1 ,k 2 .k 3

coordinate system in which the three-direction is along the direction n of a unit
normal to he sur face of the crys tal. The projection of c/A A onto the 1- 2 plane
yields dA 1 dk 2 = c/,4 A cosI3 because ,~ is the angle between the normal t to the
patch (the ray direction ) and the norma l n to the surface.

FIG. 5. Deniagnification correcti ons when the arrival ra~ , departure ray, and surface normal
are all in one plane. The detec tor field stop (see Fig. I ) is represented in image
space by the knik~ edges, which accept a dimens ion If) perpendicular to the beam.
The portion / ,~ of the laser beam accepted is determined by the geometrical condi-
(ions shown , independent ot the orientation of the virtual image
/ 4 : /.5sino? s/cosP = / / cosj ’i =

I
This manuscr ipt was produced on a couiiputer driven phototypesetter using th
U N I X  operati ng system developed at Bell Laij oraiories.
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